A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems

نویسندگان

  • Carsten Carstensen
  • Stefan A. Funken
چکیده

Computable a posteriori error bounds and related adaptive meshrefining algorithms are provided for the numerical treatment of monotone stationary flow problems with a quite general class of conforming and nonconforming finite element methods. A refined residual-based error estimate generalises the works of Verfürth; Dari, Duran and Padra; Bao and Barrett. As a consequence, reliable and efficient averaging estimates can be established on unstructured grids. The symmetric formulation of the incompressible flow problem models certain nonNewtonian flow problems and the Stokes problem with mixed boundary conditions. A Helmholtz decomposition avoids any regularity or saturation assumption in the mathematical error analysis. Numerical experiments for the partly nonconforming method analysed by Kouhia and Stenberg indicate efficiency of related adaptive mesh-refining algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles

The a posteriori error analysis of conforming finite element discretisations of the biharmonic problem for plates is well established, but nonconforming discretisations are more easy to implement in practice. The a posteriori error analysis for the Morley plate element appears very particular because two edge contributions from an integration by parts vanish simultaneously. This miracle does no...

متن کامل

A posteriori error estimates for nonlinear problems. Lr-estimates for finite element discretizations of elliptic equations

— We extend the gênerai framework of [18] for deriving a posteriori error estimâtes for approximate solutions of noniinear elliptic problems such ihat it also yields L'-error estimâtes. The gênerai results are applied to finite element discretizations of scalar quasilinear elliptic pdes of 2nd order and the stationary incompressible Navier-Stokes équations. They immediately yield a posteriori e...

متن کامل

An Adaptive Finite Element Method for Shape Optimization in Stationary Incompressible Flow with Damping

This paper develops an adaptive finite element method for shape optimization in stationary incompressible flow with damping. The continuous shape gradient of an objective functional with respect to the boundary shape is derived by using the adjoint equation method and a function space parametrization technique. A projection a-posteriori error estimator is proposed, which can be computed easily ...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Automated Goal-Oriented Error Control I: Stationary Variational Problems

This article presents a general and novel approach to the automation of goal-oriented error control in the solution of nonlinear stationary finite element variational problems. The approach is based on automated linearization to obtain the linearized dual problem, automated derivation and evaluation of a posteriori error estimates, and automated adaptive mesh refinement to control the error in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2001